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Abstract. We study the classicat-vector (n > 3) spin glass withanisotropic quenched
random Dzyaloshinskii—-Moriyabf1) interaction. A randonpwm interaction withm independent

and separated couplings defines a generalized gauge-glass model @jth-a2m) ®" 0(2)
rotational symmetry and a broken global reflection invariance. It is shown that this model is in
the same universality class as the random-gavige(‘gauge glass’) model. With an additional
uniaxial anisotropy, a crossover from Ising-like to gauge-glass critical behaviour is found for a
sufficiently large variance of them interaction. A new situation arises when there is correlation
between the separated random couplings. We show that the critical behaviour of a spin glass
with two correlated couplings of the anisotropiom interaction is in a new universality class.
The critical exponents andv of this model are calculated at two-loop order near six dimensions.
We also present a simplified and more rigorous field-theoretic analysis of the gauge-glass model.

1. Introduction

In the theory of spin glasses [1, 2] the Dzyaloshinskii-Morig® ) interaction, added to the
usual isotropic exchange coupling, is well known as an important source of macroscopic
anisotropy [3], since it breaks the global rotational invariance. Microscopicallypthe
interaction is mediated by spin—orbit scattering of the conduction electrons at non-magnetic
impurities. Its influence on the properties of spin glasses has been studied quite intensively
[3-9]. In particular, it has been shown that a quenched rarmarnmteraction with isotropic
couplings causes a crossover to Ising-like critical behaviour imhector spin glass [4, 5].

A relation has also been established between Xt spin glass with randonom
interactions and the random-gaudgel (‘gauge glass’) model. The&XY gauge glass
[10, 11] is of particular interest in the theory of Josephson-junction arrays [12], of
granular superconductors [13, 14], and of the vortex glass phase [15-17] in th&;high-
superconductors. Numerical real-space renormalization-group studies [18, 19] have shown
that the random-bon&Y spin glass with quenched randapm interaction and theXY
gauge glass belong to the same universality class, which is different from those of all other
isotropic n-vector spin glasses [20, 21]. This is also apparent in a field-theoretic analysis
[22, 23], which shows that the critical behaviour of both the random-gaiigenodel [22]
and the random-bon&' Y model withbm interaction [23] is controlled by a two-component
field, in contrast to a®>-component field in the case of the isotropiwector spin glass. Such
a reduction of the degeneracy of the eigenvalue which corresponds to the critical fluctuation
mode has been attributed to the broken global reflection symmetry in these models [23, 24].

0305-4470/96/050963+09$19.5@C) 1996 IOP Publishing Ltd 963



964 J Stein

The possible role of the quenched lo@(2) gauge invariance for the value of the lower
critical dimension is still under debate [19].

Since in the case of th&¥Y spin glass (withh = 2) the addition of theom interaction
is of crucial importance for the critical properties and leads to a new universality class,
one may suspect that a similar effect also occurs for the generattor spin glass upon
introduction of abm coupling. In the present paper we study two models which appear as
natural candidates for a generalization of the peculiar symmetry resulting in the universality
class of the gauge-glass model. A quenched ran@aminteraction without preferred
orientation of the couplings leads to the critical behaviour of the Ising spin glass [4, 5]
due to the lack of a global rotation symmetry. In section 2 we therefore consider the
n-vector @ > 3) spin glass with aranisotropicbm coupling of neighbouring spins and
with no correlationbetween the different separated components obtihénteraction. This
results in a globalo(n — 2m) ®™ O(2) rotational invariance, but destroys the reflection
symmetry. To describe a possible competition betweerpthénteraction and the dipolar
spin couplings, we will also allow for a uniaxial magnetic anisotropy. It is found that the
critical behaviour of this generalized model is that of the random-gaiigenodel. On the
other hand, a sufficiently large uniaxial anisotropy results in Ising-like critical behaviour.

In section 3 we investigate thevector spin glassvith correlation between separated
couplings of the anisotropio™m interaction. It is shown that this peculiar type of symmetry
leads to a new universality class. The corresponding critical exponemdyv are calculated
up to orderO(e?) near six dimensions, with = 6 — d.

The field-theoretic formulation of Gingras farY -type spin—glass models without global
reflection symmetry [23] is strictly valid only for th@aussiarbm spin glass, since only the
leading terms of the cumulant expansion have been considered. To show more clearly the
relation between the random-gaug@ model and theXY spin glass withbm interaction,
in section 4 we discuss a simplified and more rigorous field-theoretic treatment of the
random-gaugeXY spin glass.

2. Spin glass with uncorrelated separatedm interactions and uniaxial anisotropy

In this section we study the-component § > 3) vector spin glass with an anisotropic
guenched random Dzyaloshinskii-Moriya interaction with separated couplings. The effect of
a uniaxial magnetic anisotropy, which we choose in the direction oftihapin component,

will also be considered. The Hamiltonian of this model reads

H=> " (Jij(SialasSiv) + Dff (SiaSj)) (1)
(i.j) ab
where the summatiofi, j) is over the bonds of a simple cubic lattice, g (a = 1, ..., n)

are the components of classical spins, &g = 8., + ¥ 8..5s, iS the symmetric quadrupole
tensor. In principle, besides the uniaxial anisotropy one could also have considered more
general random dipolar couplings,,. However, additional diagonal or off-diagonal terms

of the symmetric interactiol” in (1) will, in general, drive the system to the critical
behaviour of the Ising spin glass. Since we intend to study some new peculiar features
of the antisymmetrioMm interaction, we do not consider these dipolar terms here. The
DM interaction with the couplingsl);‘j?’ = —Df’j" is the generalization of the usual three-
dimensional case, with the componentsand » defining the plane in which the spins
interact. Anisotropy of thewm interaction is introduced by the assumption that the couplings
Df]?’ are non-zero only fom < n/2 such planes. We also assume that the couplings are
separatedi.e. these planedo not intersect This requirement is crucial to find other than
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Ising-like critical behaviour. If we disregard the uniaxial anisotropy, bive interaction
reduces the rotational symmetry of the Hamiltonian frahn) to O(n — 2m) ™ 0(2),
and the interaction term related @’ also breaks the global reflection invariance under
S, — —S, or S, — —S,. The quenched random couplinds and D;‘j” obey Gaussian
probability distributions,

LL”)Z a 1 (l)?b)Z
Pij) = J ) and P(D{)) = N exp(- j > @)

1
N eXp< 2,2 2D?
where all the non-zer¢(D;)?) have no common componeator b. This is equivalent to
the requirement that the planes of interaction do not intersect. In contrast to the situation
studied in the next section, tm;‘j” are uncorrelated, i.e. they are, independently of each
other, described by Gaussian distributions.

To perform the quenched disorder average, we employ the replica method, introduce

the spinsS, with replica indexe =1, ..., n,, and obtain the replicated partition function
(Z™) = Tris exp{2 ZZ (BJ)TaaThy 2 S0S% S0,
(i,]) ab
+(BDYduy (S5, STy — SEShSHSI)] - ®)

Here we have used that,, is diagonal. We defind,, = 1 if ((D“")Z) £ 0, andd,, =0
otherwise. Next we introduce the spin-glass fieldy, = S{’aS,b' We omit quadrupole
fields Q¢ since they generate only massive modes and do not couple to the soft modes
which govern the critical behaviour. The trace in the partition function (3) can be performed
explicitly after a Hubbard—Stratonovitch transformation, since only quartic products of spins
are involved. However, we directly recall the probability distribution of the spin-glass

fields [25],
PUQY = Tris) 8(0%, — 5&.86)/ Trisy(1)
’\'exp( Z(Qzab Z Qtab tchg/jz-'_O(Qll)) (4)
a<ﬁ

abc
a<p<y

This immediately allows us to expre$g™) in the Q-fields,

(2") = / Do exp| Y |- Z(Q,ab)erZ((ﬁJ) FuaTos O, 0%
ah

()]

+(BD)?day (051,055, 015,050 |+ > 0ine ore+oeh).

abc
a<f<y

®)

To investigate the critical behaviour of the effective field theory (5) for the spin-glass
order parameter, we have to identify the fluctuation modes which become soft at the phase
transition. To extract the long-wavelength behaviour of the fields, we first introduce the
momentum dependence via the Fourier transformation

0 (k) = —— Zexp(lk ) O (6)

where N is the number of spins, and retain only tke= 0 components of the-fields.
Since the fluctuation modes which control the critical behaviour are determined by the
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guadratic terms in (5), we disregard higher powergofor the moment to obtain

(Zn,> — /DQ exp{—% Z QZfMjfchff + O(QS)} (7)
abed

a<f

whereM is the inverse zero-momentum propagator of ghéields. We find the eigenvalues
A of the (22 x n?)-matrix M and the corresponding degeneracies,

rMm=1-2z2(8J) [(n — 1)%2 — 4m]-fold degenerate

A2 =1-zB%(J%+ D?) 2m-fold degenerate

A3 =1-zB2%(J% - D? 2m-fold degenerate (8)
Ao =1—z(BJ)*(L+ y)? non-degenerate
As=1—2z(B))?*(L+y) 2(n — 1)-fold degenerate.

Here z denotes the number of nearest neighbours in the (simple cubic) lattice. In order to
identify the modes which become soft first, we note thatfor 0 the smallest eigenvalue
must be eithen, or A4, depending on the value of the involved parameters. Therefore,
the critical properties are determined by fluctuations described by either a one-nor a 2
component field. While the former case results in the critical behaviour of the Ising spin
glass [4, 25], the latter can be mapped on a cubic field theory mvitton-interacting two-
component fields, as is shown explicitly below. Such a cubic two-component field theory
describes the critical properties of th& gauge glass [22, 23]. Thus, the condition oY
gauge-glass critical behaviour reads

D?/J?> y(y +2). )

For vanishingbM coupling, D = 0, and in the range-2 < y < 0, which corresponds to
an easy-(hyper) plane anisotropy, the smallest eigenvalue 1, = A3 is (n — 1)>-fold
degenerate. This corresponds to the critical behaviour of the isot(tepicl)-component
vector spin glass [25]. Other non-zero valuesjofagain lead to Ising-like behaviour
which can be found for both positive and negative since after disorder averaging the
uniaxial anisotropy enters quadratically in. By inspection of (8), one may also find
the mean-field critical temperature, = /z(J2 + D?) for the gauge-glass transition, and
kT, = /zJ (1 + y) for the Ising-like case.

We now recover the full momentum dependence in the action of equation (5) and identify
the critical fluctuation modes for the non-trivial case described by the inequality (9), when
A2 is the smallest eigenvalue. For every pair of spin componerits (with a < b) for
which d,;, = 1 we find two eigenmodes,

Re¥” = ¢+ 05y  and I’ =¢(0% — 0 (10)
which define then complex critical order parameter fields, wherel = 1, ..., m. With
the normalization factot and the effective mass

1— 22 Zh

2 2 2
= and = 11
‘ <a 2z ) T i1k ()

wherea is the lattice spacing, the Hamiltonian which describes the critical behaviour of the
uncorrelatedm spin glass with separated couplings is finally obtained,

- - —ap « 20
H{( W) =Y Hi(¥) = Z{g [ = V)P +cc] + el \1/,3} : (12)

=1 I=1" a#p
This Hamiltonian corresponds 19 decoupled two-component fields with cubic interaction
and thus is in the same universality class as the random-gstigemodel. The decoupling
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of the critical fluctuation fields appears as a consequence of the redueed2m) ™ O (2)
rotational symmetry of the magnetic Hamiltonian due to the anisotropic nature afvthe
interactions. It is therefore this peculiar reduction of the symmetry which leads to the critical
properties of theXY gauge glass also for random magnetic systems with more than two
components.

3. Spin glass with correlated separatedm interactions

In this section we consider thevector spin glass with Gaussian anisotropic interaction,
again with the assumption that all non- zet)j’b have no common componeant or b.
However, we choose thB“Jb for different palrs(ab) of spin componentsot independent
of each other. Instead, a correlation between ithe< n/2 separated couplmg@f’j” is
introduced, which we describe by the Hamiltonian

H= Z(Jij Z(Siurabsjb) + Dj; Zdab(siasjb - Siija)> (13)

) ab (ab)
where we again allow for the uniaxial anisotropy,, and the Gaussian probability

distributions

1 (Jij)? 1 (D;j)?
N exp( 572 ) and P(Djj) = DVox exp( 212 ) (14)
To avoid overcounting, the summation over the component gairs is restricted by the
conditiona < b. The specific form of the magnetic Hamiltonian (13) may be motivated by
physical systems in which them interaction is generated by both the spin—orbit coupling
of the magnetic ions and the structural distortions of the lattice [26], which cause anisotropy
of the DM interaction and correlation between its components.

After integration of the random couplings, introducing the spin-glass figg,% as
above, and invoking the probability distribution of th@-fields (4), the corresponding
replicated partition function reads

(Z") = /DQ exp{Z[ Z(me)2+ B FaanbZ o, ]ab]
ab

(i,7)

PUij) =

a<f

+BD? Y [D das (011,05, — 031, 058
b
+ Y duda (Q0.05 — 00500 + G )]
(ab)#(cd)

Z Z me ibc QZ/CO; + O(Q4)} (15)

abc
a<B<y

To extract the soft modes of this action, we again concentrate on the quadratic terms and

transform to the momentum representation. The eigenvalues of the resulting inverse zero-
momentum propagator matri¥Z and their degeneracies are then given by

M=1-z(8J) [(n — 1)? — 4m?]-fold degenerate

o =1—2zB%(J%+ D? 2m?-fold degenerate

A3 =1—2z8%(J%> - D? 2m?-fold degenerate (16)
r=1—z(B))2A+ y)? non-degenerate

As=1—z(B))°(A+7y) 2(n — 1)-fold degenerate..
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According to the discussion given above, if inequality (9) holds, the smallest eigenvalue is
X2, and the critical behaviour is thus controlled bya?2component field whose components

do not decouple. To elucidate the structure of the resulting field theory more clearly, and
since new physical behaviour is already presentifet 2, in the following we consider the
simplest case ofwo correlated separatemv couplings, which requires > 4. Denoting

the two correlated pairs of spin components(by) = (12) and (cd) = (34), we find the
corresponding eight critical fluctuation modes

$1=(£/2)(Q11+ Q22+ Q33+ Qaa) ¢2 = (£/2)(Q11+ Q22— Q33— Qaa)
$3=(£/2)(Q12— Q21+ Q34— Qa3) $a = (£/2)(Q12— Q21— Q34+ Qa3) (17)
¢5 = (£/2)(Q13+ Q24+ Q31+ Qs2) 6 = (£/2)(Q13+ Q24— Q031 — Q42)
¢7=(0/2)(Q14— Q23+ Q41— O32) 8= ({/2)(Q14— Q23— Qa1+ O32).

Due to the symmetry reIatioerf = Qf;", the fields¢1, ¢, ¢s and ¢; are symmetric

under permutation of replica indicaﬁf“ = +¢§’"3, whereas the fieldgs, ¢4, ¢ and¢g are
antisymmetric,qbf“ = —¢2"5. From this property the replica structure of the corresponding
propagators immediately follows:

@ (@) (—)) = ($* (DP* (—a)) = (6 @ (—q)) = — (6P (¢t (—q))  (18)

wherea # 8. We now evaluate the contribution to the action cubic in thdields and
retain only the terms which couple to the eight soft modes,

8
3
TrQ = Z QZbﬂ gcy QZ; =~ Z uijk(ﬁ?ﬂ(ﬁfy(ﬁza_ (19)
"}?" aBy i, j.k=1
apy

Of the 512 components of the interaction ternggf only 64 are non-zero; these are listed in
table 1. With the full momentum dependence retained in (15), we then obtain the effective

Table 1. The 64 non-zero components of the tensgy for the n-vector spin glass with two
correlatedom couplings. The table list&jk) and the sign of;j; = +1.

(111) (122) (133) (144) (155) (166) (177) (188)

+ + - - + - + -
(212) (221) (234) (243) (256) (265) (278) (287)
+ + - - - + - +
(313) (324) (331) (342) (358) (367) (376) (385)
(414) (423) (432) (441) (457) (468) (475) (486)
- - - - + - - +
(515) (526) (538) (547) (551) (562) (574) (583)
+ + - - + - + -
(616) (625) (637) (648) (652) (661) (673) (684)
- - + + + - + -
(717)  (728) (736) (745) (754) (763) (771) (782)
+ + + + - + + -

(818) (827) (835) (846) (853) (864) (872) (881)
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Hamiltonian of the spin glass with two correlatesi couplings,

8 8
HApd) =3 Y ¢ =V +wod Y wined " ¢]" . (20)

a#p 1=1 afy i,j.k=1

This Hamiltonian describes a cubic field theory of the general form studied by de Alcantara
Bonfim et al [27]. To find its critical exponents, we have to evaluate the contractions of
the tensoru;;, as defined in [27]. To orde®(e?) it is sufficient to calculate the tensor
contractions corresponding to the diagrams of figure 1. We find

o =16(n, — 2) B=8n,—23) y = 32. (21)

Taking the replica limitn, — 0 and inserting these results for, 8, y in the general
expressions of [27], witlk = 6 — d the critical exponentg andv are finally obtained,
€ 72 1 5e 132

= - — — d == = ~a . 22
"="6" 288 " V=554 1152 (22)

Up to orderO(¢) the exponents (22) agree with those of the random-gaiigenodel [20]
and of then-vector spin glass in the — oo limit [25]. The coefficient ofe? is different
from the random-gaug&Y model [21] and from any isotropie-vector spin glass [28, 29].
Thus, the spin glass with two correlated couplings of the randeininteraction is in a new
universality class.

Figure 1. The tensor contractions, 8, andy contributing at two-loop order as defined in [27].

4. The random-gaugeXY model

To establish a closer relation between the results of the preceding sections and the field-
theoretic treatment of the gauge glass, in this section we present a derivation of the effective
field theory for the random-gaugéY model which is simpler and more rigorous than the
earlier derivations [22, 23]. The random-gaug& model is given by the Hamiltonian

H= Z K;jcod¢; — ¢; + A;j) (23)
{i.J)
with the local phase; and the quenched random-gauge faetgrwhich represents a phase
twist along the bondi, j) of the lattice which we assume to be a regular one. Defining

a two-component spin vectd; = {cos¢;, sing;} leads to the well known mapping on a
planar spin Hamiltonian,

H=> (4ij(Si+ )+ Dyz- (i x S)). (24)
(i,))
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The random spin coupling; and D;; are not independent, but are related via the gauge
factor

Jij = K COSA;; and D;; = K sinA;; (25)

where we have take;; = K independent of the bond. It has been shown by Gingras
[18] in a real-space renormalization-group study that the random-gsiligmodel (23) and
the spin-glass model (24) witindependentandom couplings/;; and D;; are in the same
universality class and thus deviations from the constraint (25) are irrelevant. Subsequently,
the mapping of th&(Y spin glass with randomm interaction and independent couplings on
a cubic two-component field theory has been established [23]. Although this field-theoretic
analysis captures the correct critical behaviour, due to the neglect of higher cumulants
it is strictly valid only for a Gaussian distribution of the couplings. On the other hand,
the random-gauge&’Y model with uniformly distributed gauge phases permits an exact
treatment of the disorder average which points out more clearly the analogy with our above
results and which we present in this section.

We start with Hamiltonian (24) and choose uniform distributions for the local gauge
phasesA;;,

1

27
but take into account the condition (25). This leads to the replicated partition function

1 [~ .
(2" =Trs [ | P /O de exp(pi; cosp + gi; sing) = Trig [ | 10<\/ ph+ q,?j) (27)

(i) (i)

P(A;j) = (26)

where
pij = BK Z SiaSia and qij = BK Z&m TS (28)

aba

and Iy is the modified Bessel function. Hetg,, is the totally antisymmetric tensor and the
summation over spin componentsh extends over, y. Introducing the spin-glass fields
0!, and defining

Q=2 (000, + O 0%, — 0, 0% (29)
a<f
ab

the partition function can be written in the form
(Zmy — /DQ (o) exp Y Inlo(BK 1+ Q) (30)
i.J)
We now expand the action in powers ¢; and omit constant terms and those of order
O(Q? or higher to obtain

K IL(BK
(zm) = fDQ Po) exp( 3 <’g o/ )) o, +o@)). @
(i,7)

2 Iy(BK)
Again, writing the zero-momentum contributions bilinear in tBefields in the form (7),
one finds the eigenvalues of the inverse propagator

=1 two-fold degenerate
ro=1-2z8K I)(BK)/Io(BK) two-fold degenerate .

From this result, and if we identify the two critical modes by setting: x andb = y in
(20), the effective Hamiltonian (12) witlk = 1 finally follows.

(32)
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5. Conclusion

In the present paper the critical properties of classical spin glasses with anisotropic random
Dzyaloshinskii-Moriya interactions have been addressed. We have found thav#utor

spin glass withn < n/2 independent and separat@d couplings is in the same universality
class as theXY gauge glass. New physical behaviour is present in a spin glass with
correlation between the separated randovncomponents. The explicit calculation of the
critical exponents at two-loop level of arrexpansion around six dimensions shows that
such a spin-glass model with two correlated couplings belongs to a new universality
class. Finally, in this paper we have presented a simplified and more rigorous field-theoretic
treatment of theXY gauge-glass model.
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