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Abstract. We study the classicaln-vector (n > 3) spin glass withanisotropic quenched
random Dzyaloshinskii–Moriya (DM) interaction. A randomDM interaction withm independent
and separated couplings defines a generalized gauge-glass model with aO(n − 2m) ⊗m O(2)

rotational symmetry and a broken global reflection invariance. It is shown that this model is in
the same universality class as the random-gaugeXY (‘gauge glass’) model. With an additional
uniaxial anisotropy, a crossover from Ising-like to gauge-glass critical behaviour is found for a
sufficiently large variance of theDM interaction. A new situation arises when there is correlation
between the separated randomDM couplings. We show that the critical behaviour of a spin glass
with two correlatedcouplings of the anisotropicDM interaction is in a new universality class.
The critical exponentsη andν of this model are calculated at two-loop order near six dimensions.
We also present a simplified and more rigorous field-theoretic analysis of the gauge-glass model.

1. Introduction

In the theory of spin glasses [1, 2] the Dzyaloshinskii–Moriya (DM) interaction, added to the
usual isotropic exchange coupling, is well known as an important source of macroscopic
anisotropy [3], since it breaks the global rotational invariance. Microscopically, theDM

interaction is mediated by spin–orbit scattering of the conduction electrons at non-magnetic
impurities. Its influence on the properties of spin glasses has been studied quite intensively
[3–9]. In particular, it has been shown that a quenched randomDM interaction with isotropic
couplings causes a crossover to Ising-like critical behaviour in then-vector spin glass [4, 5].

A relation has also been established between theXY spin glass with randomDM

interactions and the random-gaugeXY (‘gauge glass’) model. TheXY gauge glass
[10, 11] is of particular interest in the theory of Josephson-junction arrays [12], of
granular superconductors [13, 14], and of the vortex glass phase [15–17] in the high-Tc

superconductors. Numerical real-space renormalization-group studies [18, 19] have shown
that the random-bondXY spin glass with quenched randomDM interaction and theXY

gauge glass belong to the same universality class, which is different from those of all other
isotropic n-vector spin glasses [20, 21]. This is also apparent in a field-theoretic analysis
[22, 23], which shows that the critical behaviour of both the random-gaugeXY model [22]
and the random-bondXY model withDM interaction [23] is controlled by a two-component
field, in contrast to an2-component field in the case of the isotropicn-vector spin glass. Such
a reduction of the degeneracy of the eigenvalue which corresponds to the critical fluctuation
mode has been attributed to the broken global reflection symmetry in these models [23, 24].
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The possible role of the quenched localO(2) gauge invariance for the value of the lower
critical dimension is still under debate [19].

Since in the case of theXY spin glass (withn = 2) the addition of theDM interaction
is of crucial importance for the critical properties and leads to a new universality class,
one may suspect that a similar effect also occurs for the generaln-vector spin glass upon
introduction of aDM coupling. In the present paper we study two models which appear as
natural candidates for a generalization of the peculiar symmetry resulting in the universality
class of the gauge-glass model. A quenched randomDM interaction without preferred
orientation of the couplings leads to the critical behaviour of the Ising spin glass [4, 5]
due to the lack of a global rotation symmetry. In section 2 we therefore consider the
n-vector (n > 3) spin glass with ananisotropic DM coupling of neighbouring spins and
with no correlationbetween the different separated components of theDM interaction. This
results in a globalO(n − 2m) ⊗m O(2) rotational invariance, but destroys the reflection
symmetry. To describe a possible competition between theDM interaction and the dipolar
spin couplings, we will also allow for a uniaxial magnetic anisotropy. It is found that the
critical behaviour of this generalized model is that of the random-gaugeXY model. On the
other hand, a sufficiently large uniaxial anisotropy results in Ising-like critical behaviour.

In section 3 we investigate then-vector spin glasswith correlation between separated
couplings of the anisotropicDM interaction. It is shown that this peculiar type of symmetry
leads to a new universality class. The corresponding critical exponentsη andν are calculated
up to orderO(ε2) near six dimensions, withε = 6 − d.

The field-theoretic formulation of Gingras forXY -type spin–glass models without global
reflection symmetry [23] is strictly valid only for theGaussianDM spin glass, since only the
leading terms of the cumulant expansion have been considered. To show more clearly the
relation between the random-gaugeXY model and theXY spin glass withDM interaction,
in section 4 we discuss a simplified and more rigorous field-theoretic treatment of the
random-gaugeXY spin glass.

2. Spin glass with uncorrelated separatedDM interactions and uniaxial anisotropy

In this section we study then-component (n > 3) vector spin glass with an anisotropic
quenched random Dzyaloshinskii–Moriya interaction with separated couplings. The effect of
a uniaxial magnetic anisotropy, which we choose in the direction of thenth spin component,
will also be considered. The Hamiltonian of this model reads

H =
∑
〈i,j〉

∑
ab

(Jij (Sia0abSjb) + Dab
ij (SiaSjb)) (1)

where the summation〈i, j〉 is over the bonds of a simple cubic lattice, theSia (a = 1, . . . , n)
are the components of classical spins, and0ab = δab +γ δanδbn is the symmetric quadrupole
tensor. In principle, besides the uniaxial anisotropy one could also have considered more
general random dipolar couplings0ab. However, additional diagonal or off-diagonal terms
of the symmetric interaction0 in (1) will, in general, drive the system to the critical
behaviour of the Ising spin glass. Since we intend to study some new peculiar features
of the antisymmetricDM interaction, we do not consider these dipolar terms here. The
DM interaction with the couplingsDab

ij = −Dba
ij is the generalization of the usual three-

dimensional case, with the componentsa and b defining the plane in which the spins
interact. Anisotropy of theDM interaction is introduced by the assumption that the couplings
Dab

ij are non-zero only form < n/2 such planes. We also assume that the couplings are
separated, i.e. these planesdo not intersect. This requirement is crucial to find other than
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Ising-like critical behaviour. If we disregard the uniaxial anisotropy, theDM interaction
reduces the rotational symmetry of the Hamiltonian fromO(n) to O(n − 2m) ⊗m O(2),
and the interaction term related toDab

ij also breaks the global reflection invariance under
Sa → −Sa or Sb → −Sb. The quenched random couplingsJij and Dab

ij obey Gaussian
probability distributions,

P(Jij ) = 1

J
√

2π
exp

(
− (Jij )

2

2J 2

)
and P(Dab

ij ) = 1

D
√

2π
exp

(
− (Dab

ij )2

2D2

)
(2)

where all the non-zero〈(Dab
ij )2〉 have no common componenta or b. This is equivalent to

the requirement that the planes of interaction do not intersect. In contrast to the situation
studied in the next section, theDab

ij are uncorrelated, i.e. they are, independently of each
other, described by Gaussian distributions.

To perform the quenched disorder average, we employ the replica method, introduce
the spinsSα

ia with replica indexα = 1, . . . , nr , and obtain the replicated partition function

〈Znr 〉 = Tr{S} exp
{

1
2

∑
〈i,j〉

∑
ab
αβ

(
(βJ )20aa0bb Sα

iaS
β

ibS
α
jaS

β

jb

+(βD)2dab (Sα
iaS

β

iaS
α
jbS

β

jb − Sα
iaS

β

ibS
α
jbS

β

ja)
)}

. (3)

Here we have used that0ab is diagonal. We definedab = 1 if 〈(Dab
ij )2〉 6= 0, anddab = 0

otherwise. Next we introduce the spin-glass fieldsQ
αβ

iab = Sα
iaS

β

ib. We omit quadrupole
fields Qαα

iab since they generate only massive modes and do not couple to the soft modes
which govern the critical behaviour. The trace in the partition function (3) can be performed
explicitly after a Hubbard–Stratonovitch transformation, since only quartic products of spins
are involved. However, we directly recall the probability distribution of the spin-glass
fields [25],

P({Q}) = Tr{S} δ(Q
αβ

iab − Sα
iaS

β

ib)/ Tr{S}(1)

' exp
(
− 1

2

∑
ab

α<β

(Q
αβ

iab)
2 +

∑
abc

α<β<γ

Q
αβ

iabQ
βγ

ibcQ
γα

ica + O(Q4
i )

)
. (4)

This immediately allows us to express〈Znr 〉 in the Q-fields,

〈Znr 〉 =
∫

DQ exp
{∑

ab
α<β

[
− 1

2

∑
i

(Q
αβ

iab)
2 +

∑
〈i,j〉

(
(βJ )20aa0bb Q

αβ

iabQ
αβ

jab

+(βD)2dab (Q
αβ

iaaQ
αβ

jbb−Q
αβ

iabQ
αβ

jba)
)]

+
∑
abc

α<β<γ

∑
i

Q
αβ

iabQ
βγ

ibcQ
γα

ica+O(Q4
i )

}
.

(5)

To investigate the critical behaviour of the effective field theory (5) for the spin-glass
order parameter, we have to identify the fluctuation modes which become soft at the phase
transition. To extract the long-wavelength behaviour of the fields, we first introduce the
momentum dependence via the Fourier transformation

Q
αβ

ab (k) = 1√
N

∑
i

exp(ik · ri ) Q
αβ

iab (6)

whereN is the number of spins, and retain only thek = 0 components of theQ-fields.
Since the fluctuation modes which control the critical behaviour are determined by the
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quadratic terms in (5), we disregard higher powers ofQ for the moment to obtain

〈Znr 〉 =
∫

DQ exp
{
− 1

2

∑
abcd
α<β

Q
αβ

abM
αβ

ab,cdQ
αβ

cd + O(Q3)
}

(7)

whereM is the inverse zero-momentum propagator of theQ-fields. We find the eigenvalues
λ of the (n2 × n2)-matrix M and the corresponding degeneracies,

λ1 = 1 − z(βJ )2 [(n − 1)2 − 4m]-fold degenerate
λ2 = 1 − zβ2(J 2 + D2) 2m-fold degenerate
λ3 = 1 − zβ2(J 2 − D2) 2m-fold degenerate
λ4 = 1 − z(βJ )2(1 + γ )2 non-degenerate
λ5 = 1 − z(βJ )2(1 + γ ) 2(n − 1)-fold degenerate .

(8)

Herez denotes the number of nearest neighbours in the (simple cubic) lattice. In order to
identify the modes which become soft first, we note that forD > 0 the smallest eigenvalue
must be eitherλ2 or λ4, depending on the value of the involved parameters. Therefore,
the critical properties are determined by fluctuations described by either a one- or a 2m-
component field. While the former case results in the critical behaviour of the Ising spin
glass [4, 25], the latter can be mapped on a cubic field theory withm non-interacting two-
component fields, as is shown explicitly below. Such a cubic two-component field theory
describes the critical properties of theXY gauge glass [22, 23]. Thus, the condition forXY

gauge-glass critical behaviour reads

D2/J 2 > γ (γ + 2) . (9)

For vanishingDM coupling,D = 0, and in the range−2 < γ < 0, which corresponds to
an easy-(hyper) plane anisotropy, the smallest eigenvalueλ1 = λ2 = λ3 is (n − 1)2-fold
degenerate. This corresponds to the critical behaviour of the isotropic(n − 1)-component
vector spin glass [25]. Other non-zero values ofγ again lead to Ising-like behaviour
which can be found for both positive and negativeγ , since after disorder averaging the
uniaxial anisotropy enters quadratically inλ4. By inspection of (8), one may also find
the mean-field critical temperatureskTc =

√
z(J 2 + D2) for the gauge-glass transition, and

kTc = √
zJ (1 + γ ) for the Ising-like case.

We now recover the full momentum dependence in the action of equation (5) and identify
the critical fluctuation modes for the non-trivial case described by the inequality (9), when
λ2 is the smallest eigenvalue. For every pair of spin components(ab) (with a < b) for
which dab = 1 we find two eigenmodes,

Re9αβ

l = ζ(Qαβ
aa + Q

αβ

bb ) and Im9
αβ

l = ζ(Q
αβ

ab − Q
αβ

ba ) (10)

which define them complex critical order parameter fields9l , wherel = 1, . . . , m. With
the normalization factorζ and the effective massr,

ζ =
(

a2 1 − λ2

2z

)1/2

and r = zλ2

1 − λ2
(11)

wherea is the lattice spacing, the Hamiltonian which describes the critical behaviour of the
uncorrelatedDM spin glass with separated couplings is finally obtained,

H({9l}l) =
m∑

l=1

Hl(9l) =
m∑

l=1

{
1
8

∑
α 6=β

[
9

αβ

l (r − ∇2)9
αβ

l + CC
] + g0

3!
Tr 93

l

}
. (12)

This Hamiltonian corresponds tom decoupled two-component fields with cubic interaction
and thus is in the same universality class as the random-gaugeXY model. The decoupling
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of the critical fluctuation fields appears as a consequence of the reducedO(n−2m)⊗mO(2)

rotational symmetry of the magnetic Hamiltonian due to the anisotropic nature of theDM

interactions. It is therefore this peculiar reduction of the symmetry which leads to the critical
properties of theXY gauge glass also for random magnetic systems with more than two
components.

3. Spin glass with correlated separatedDM interactions

In this section we consider then-vector spin glass with Gaussian anisotropicDM interaction,
again with the assumption that all non-zeroDab

ij have no common componenta or b.
However, we choose theDab

ij for different pairs(ab) of spin componentsnot independent
of each other. Instead, a correlation between them < n/2 separated couplingsDab

ij is
introduced, which we describe by the Hamiltonian

H =
∑
〈i,j〉

(
Jij

∑
ab

(Sia0abSjb) + Dij

∑
(ab)

dab(SiaSjb − SibSja)

)
(13)

where we again allow for the uniaxial anisotropy0ab, and the Gaussian probability
distributions

P(Jij ) = 1

J
√

2π
exp

(
− (Jij )

2

2J 2

)
and P(Dij ) = 1

D
√

2π
exp

(
− (Dij )

2

2D2

)
. (14)

To avoid overcounting, the summation over the component pairs(ab) is restricted by the
conditiona < b. The specific form of the magnetic Hamiltonian (13) may be motivated by
physical systems in which theDM interaction is generated by both the spin–orbit coupling
of the magnetic ions and the structural distortions of the lattice [26], which cause anisotropy
of the DM interaction and correlation between its components.

After integration of the random couplings, introducing the spin-glass fieldsQ
αβ

iab as
above, and invoking the probability distribution of theQ-fields (4), the corresponding
replicated partition function reads

〈Znr 〉 =
∫

DQ exp

{∑
ab

α<β

[
− 1

2

∑
i

(Q
αβ

iab)
2 + (βJ )20aa0bb

∑
〈i,j〉

Q
αβ

iabQ
αβ

jab

]
+(βD)2

∑
〈i,j〉
α<β

[∑
(ab)

dab (Q
αβ

iaaQ
αβ

jbb − Q
αβ

iabQ
αβ

jba)

+
∑

(ab)6=(cd)

dabdcd (Q
αβ

iacQ
αβ

jbd − Q
αβ

ibcQ
αβ

jad) + (i ↔ j)
]

+
∑
abc

α<β<γ

∑
i

Q
αβ

iabQ
βγ

ibcQ
γα

ica + O(Q4
i )

}
. (15)

To extract the soft modes of this action, we again concentrate on the quadratic terms and
transform to the momentum representation. The eigenvalues of the resulting inverse zero-
momentum propagator matrixM and their degeneracies are then given by

λ1 = 1 − z(βJ )2 [(n − 1)2 − 4m2]-fold degenerate
λ2 = 1 − zβ2(J 2 + D2) 2m2-fold degenerate
λ3 = 1 − zβ2(J 2 − D2) 2m2-fold degenerate
λ4 = 1 − z(βJ )2(1 + γ )2 non-degenerate
λ5 = 1 − z(βJ )2(1 + γ ) 2(n − 1)-fold degenerate .

(16)
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According to the discussion given above, if inequality (9) holds, the smallest eigenvalue is
λ2, and the critical behaviour is thus controlled by a 2m2-component field whose components
do not decouple. To elucidate the structure of the resulting field theory more clearly, and
since new physical behaviour is already present form = 2, in the following we consider the
simplest case oftwo correlated separatedDM couplings, which requiresn > 4. Denoting
the two correlated pairs of spin components by(ab) = (12) and (cd) = (34), we find the
corresponding eight critical fluctuation modes

φ1 = (ζ/2)(Q11 + Q22 + Q33 + Q44) φ2 = (ζ/2)(Q11 + Q22 − Q33 − Q44)

φ3 = (ζ/2)(Q12 − Q21 + Q34 − Q43) φ4 = (ζ/2)(Q12 − Q21 − Q34 + Q43)

φ5 = (ζ/2)(Q13 + Q24 + Q31 + Q42) φ6 = (ζ/2)(Q13 + Q24 − Q31 − Q42)

φ7 = (ζ/2)(Q14 − Q23 + Q41 − Q32) φ8 = (ζ/2)(Q14 − Q23 − Q41 + Q32) .

(17)

Due to the symmetry relationQαβ

ab = Q
βα

ba , the fieldsφ1, φ2, φ5 and φ7 are symmetric
under permutation of replica indices,φ

βα
s = +φ

αβ
s , whereas the fieldsφ3, φ4, φ6 andφ8 are

antisymmetric,φβα
a = −φ

αβ
a . From this property the replica structure of the corresponding

propagators immediately follows:

〈φαβ
s (q)φαβ

s (−q)〉 = 〈φαβ
s (q)φβα

s (−q)〉 = 〈φαβ
a (q)φαβ

a (−q)〉 = −〈φαβ
a (q)φβα

a (−q)〉 (18)

whereα 6= β. We now evaluate the contribution to the action cubic in theQ-fields and
retain only the terms which couple to the eight soft modes,

Tr Q3 =
∑
abc
αβγ

Q
αβ

abQ
βγ

bc Qγα
ca '

∑
αβγ

8∑
i,j,k=1

uijkφ
αβ

i φ
βγ

j φ
γα

k . (19)

Of the 512 components of the interaction tensoruijk only 64 are non-zero; these are listed in
table 1. With the full momentum dependence retained in (15), we then obtain the effective

Table 1. The 64 non-zero components of the tensoruijk for the n-vector spin glass with two
correlatedDM couplings. The table lists(ijk) and the sign ofuijk = ±1.

(111) (122) (133) (144) (155) (166) (177) (188)
+ + − − + − + −
(212) (221) (234) (243) (256) (265) (278) (287)
+ + − − − + − +
(313) (324) (331) (342) (358) (367) (376) (385)
− − − − − + + −
(414) (423) (432) (441) (457) (468) (475) (486)
− − − − + − − +
(515) (526) (538) (547) (551) (562) (574) (583)
+ + − − + − + −
(616) (625) (637) (648) (652) (661) (673) (684)
− − + + + − + −
(717) (728) (736) (745) (754) (763) (771) (782)
+ + + + − + + −
(818) (827) (835) (846) (853) (864) (872) (881)
− − − − − + + −
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Hamiltonian of the spin glass with two correlatedDM couplings,

H({φl}l) = 1
2

∑
α 6=β

8∑
l=1

φ
αβ

l (r − ∇2)φ
αβ

l + w0

∑
αβγ

8∑
i,j,k=1

uijkφ
αβ

i φ
βγ

j φ
γα

k . (20)

This Hamiltonian describes a cubic field theory of the general form studied by de Alcantara
Bonfim et al [27]. To find its critical exponents, we have to evaluate the contractions of
the tensoruijk as defined in [27]. To orderO(ε2) it is sufficient to calculate the tensor
contractions corresponding to the diagrams of figure 1. We find

α = 16(nr − 2) β = 8(nr − 3) γ = 32. (21)

Taking the replica limitnr → 0 and inserting these results forα, β, γ in the general
expressions of [27], withε = 6 − d the critical exponentsη andν are finally obtained,

η = −ε

6
− 7ε2

288
and ν = 1

2
+ 5ε

24
− 13ε2

1152
. (22)

Up to orderO(ε) the exponents (22) agree with those of the random-gaugeXY model [20]
and of then-vector spin glass in then → ∞ limit [25]. The coefficient ofε2 is different
from the random-gaugeXY model [21] and from any isotropicn-vector spin glass [28, 29].
Thus, the spin glass with two correlated couplings of the randomDM interaction is in a new
universality class.

α β γ

Figure 1. The tensor contractionsα, β, andγ contributing at two-loop order as defined in [27].

4. The random-gaugeXY model

To establish a closer relation between the results of the preceding sections and the field-
theoretic treatment of the gauge glass, in this section we present a derivation of the effective
field theory for the random-gaugeXY model which is simpler and more rigorous than the
earlier derivations [22, 23]. The random-gaugeXY model is given by the Hamiltonian

H =
∑
〈i,j〉

Kij cos(φi − φj + Aij ) (23)

with the local phaseφi and the quenched random-gauge factorAij which represents a phase
twist along the bond〈i, j〉 of the lattice which we assume to be a regular one. Defining
a two-component spin vectorSi = {cosφi, sinφi} leads to the well known mapping on a
planar spin Hamiltonian,

H =
∑
〈i,j〉

(
Jij (Si · Sj ) + Dij ẑ · (Si × Sj )

)
. (24)



970 J Stein

The random spin couplingsJij andDij are not independent, but are related via the gauge
factor

Jij = K cosAij and Dij = K sinAij (25)

where we have takenKij = K independent of the bond. It has been shown by Gingras
[18] in a real-space renormalization-group study that the random-gaugeXY model (23) and
the spin-glass model (24) withindependentrandom couplingsJij andDij are in the same
universality class and thus deviations from the constraint (25) are irrelevant. Subsequently,
the mapping of theXY spin glass with randomDM interaction and independent couplings on
a cubic two-component field theory has been established [23]. Although this field-theoretic
analysis captures the correct critical behaviour, due to the neglect of higher cumulants
it is strictly valid only for a Gaussian distribution of the couplings. On the other hand,
the random-gaugeXY model with uniformly distributed gauge phases permits an exact
treatment of the disorder average which points out more clearly the analogy with our above
results and which we present in this section.

We start with Hamiltonian (24) and choose uniform distributions for the local gauge
phasesAij ,

P(Aij ) = 1

2π
(26)

but take into account the condition (25). This leads to the replicated partition function

〈Znr 〉 = Tr{S}
∏
〈i,j〉

1

2π

∫ 2π

0
dϕ exp(pij cosϕ + qij sinϕ) = Tr{S}

∏
〈i,j〉

I0

(√
p2

ij + q2
ij

)
(27)

where

pij = βK
∑
aα

Sα
iaS

α
ja and qij = βK

∑
abα

εabz Sα
iaS

α
jb (28)

andI0 is the modified Bessel function. Hereεabz is the totally antisymmetric tensor and the
summation over spin componentsa, b extends overx, y. Introducing the spin-glass fields
Q

αβ

iab and defining

Qij = 2
∑
α<β
ab

(
Q

αβ

iabQ
αβ

jab + Q
αβ

iaaQ
αβ

jbb − Q
αβ

iabQ
αβ

jba

)
(29)

the partition function can be written in the form

〈Znr 〉 =
∫

DQ P({Q}) exp
{∑

〈i,j〉
ln I0(βK

√
1 + Qij )

}
. (30)

We now expand the action in powers ofQij and omit constant terms and those of order
O(Q4

i ) or higher to obtain

〈Znr 〉 =
∫

DQ P({Q}) exp
{∑

〈i,j〉

(
βK

2

I ′
0(βK)

I0(βK)

)
Qij + O(Q2

ij )
}

. (31)

Again, writing the zero-momentum contributions bilinear in theQ-fields in the form (7),
one finds the eigenvalues of the inverse propagator

λ1 = 1 two-fold degenerate
λ2 = 1 − 2zβK I ′

0(βK)/I0(βK) two-fold degenerate .
(32)

From this result, and if we identify the two critical modes by settinga = x andb = y in
(10), the effective Hamiltonian (12) withm = 1 finally follows.
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5. Conclusion

In the present paper the critical properties of classical spin glasses with anisotropic random
Dzyaloshinskii–Moriya interactions have been addressed. We have found that then-vector
spin glass withm 6 n/2 independent and separatedDM couplings is in the same universality
class as theXY gauge glass. New physical behaviour is present in a spin glass with
correlation between the separated randomDM components. The explicit calculation of the
critical exponents at two-loop level of anε-expansion around six dimensions shows that
such a spin-glass model with two correlatedDM couplings belongs to a new universality
class. Finally, in this paper we have presented a simplified and more rigorous field-theoretic
treatment of theXY gauge-glass model.
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